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a b s t r a c t

A model to predict the autoignition temperatures (AIT) of organic compounds is proposed based on the
structural group contribution (SGC) approach. This model has been built up using a 400-compound train-
ing set; the fitting ability for these training data is 0.8474, with an average error of 32 K and an average
error percentage of 4.9%. The predictive capability of the proposed model has been demonstrated on an
83-compound validation set; the predictive capability for these validation data is about 0.5361, with an
average error of 70 K and an average error percentage of 11.0%. The proposed model is shown to be more
utoignition temperature
tructural group contribution

accurate than those of other published works. This improvement is largely attributed to the modifications
of the group definitions for estimating the AIT instead of the type of empirical model chosen. Through
the Q2 value and hypothesis testing, it was found that the empirical model should be chosen as a polyno-
mial of degree 3. As compared to the known errors in experimentally determining the AIT, the proposed
method offers a reasonable estimate of the AIT for the organic compounds in the training set, and can
also approximate the AIT for compounds whose AIT is as yet unknown or not readily available to within
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a reasonable accuracy.

. Introduction

The autoignition temperature (AIT) is defined as the lowest tem-
erature at which a substance will ignite in the absence of a spark
r flame. Based on the thermal theory of ignition and on classical
eaction-rate theory, the AIT can be regarded as the temperature
o which a combustible mixture must be raised so that the rate
f heat evolution from the exothermic oxidation reactions of the
ystem will just overbalance the rate at which heat is lost to the
urroundings. The ability of a substance to spontaneously ignite
ntroduces potential fire hazards for all who must handle, trans-
ort, or store combustible materials. Thus, risk assessment methods
uch as API-581 usually take the AIT of a substance as an essential
nput parameter to define the possible consequences of a leakage
f combustible liquids [1]. Autoignition is also studied in relation to
he performance of combustion engines through the phenomenon
f engine knock [2].
As the AIT is the temperature at which a material will sponta-
eously ignite when exposed to the atmosphere, it depends not
nly on the chemical and physical properties of the substance but
lso the method and the apparatus employed for its determina-
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ion, such as the test pressure, oxygen concentration, and volume
nd material of the vessel used. Hence, it is very common that the
IT of a specific compound is reported differently in different liter-
tures; these differences may be as much as 300 K. For example, as
hown in Table 1, the AIT of acetaldehyde is reported to range from
13 to 758.15 K in five different authoritative sources [3–7]. Table 1
ists some compounds for which the difference in AIT is more than
00 K across separate sources. One of the important reasons that
esults in this uncertainty is the value of AIT reported in different
atabases may be conducted by different experimental method.
ven in the same database, different compounds may be conducted
n different experimental methods [2]. However, all databases usu-
lly reported the AIT value without the information of experimental
ethod employed. For example, there is no way to trace back

he data reported in the hazardous chemical database or SAX’S
angerous properties of industrial materials. Even in the famous
IPPR® project, the data quality of AIT is still flagged as “uneval-
ated”. Since AIT is usually reported without the experimental
ethod employed, it is not possible to account this bias by includ-

ng experimental method as an additional explanatory variable
r to group them by different experimental methods. In addition,

ecause visual inspection is chosen to detect the sudden appear-
nce of a flame inside the autoignition vessel, determining AIT is
reatly limited by human capabilities [8]. Usually, the average error
n experimentally determined AIT values is deemed to be about
30 K in the literature [9]. Besides this problem, the determination

http://www.sciencedirect.com/science/journal/03043894
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Table 1
Experimental AITs for selected compounds from different sourcesa

Compound name Ref. [3] Ref. [4] Ref. [5] Ref. [6] Ref. [7]

2-Butanone 677 788.71 – 788.7 778
2,4-Dimethylphenol 753 872 – – 872
Hexadecanoic acid 513 650 – – –
Piperazidine 593 728.15 – – 593
1,3-Diisopropylbenzene 722 349.82 – – –
Benzoyl chloride 873 358.15 – – 470.2
Methylhexanone 728 464.15 – – –
2-Methylnitrobenzene 693 578.15 – – 693
2,4-Dihydroxy-2-methylpentane 698 579 – – 579
1-Methyl-2-pyrrolidinone 518 619.15 – – 543
2-Heptanone 805 666.15 – 805.93 666
Crotonic acid 773 669.26 – – 669
1,4-Benzenedicarboxylic acid 951 769 – – 769
2,4-Dimethylpentane 598 708 – – –
1,3-Benzenedicarboxylic acid 973 769 – – –
Phenol 878 988.15 988 – 988
I 3.15
A 8.15
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sobutyl formate 698 59
cetaldehyde 413 75

The AIT values are in K.

f the AIT by experiment is very laborious and is not always feasible
8]. In this light, the ability to estimate AIT values by mathematical

odeling will be a cost-efficient and critical aid to this discipline.
Multivariate statistical methods such as multiple linear regres-

ion and principal component regression are important approaches
o predict the AITs of organic compounds. Several studies have con-
idered using the physical properties of compounds, such as the
ritical pressure, parachor, and molecular weight, as descriptors
o predict the AIT [2,9,10–13]. Such approaches are usually known
s quantitative structure–property relation (QSPR) approaches in
hich the molecular structures are characterized by the various
hysical properties of the compound. The underlying assumption in
he QSPR approach is that there is some sort of relationship between
he properties of interest and the molecular descriptors (i.e., the

easurable physical properties). Thus, the QSPR approach involves
ultivariate analysis using several measurements (or descriptors)

o deduce the desired property. Although the QSPR approach has
een shown to estimate the properties of compounds with certain
egree of success, it is applicable, however, only if the measure-
ents of the molecular descriptors are available. On the other hand,

he structure group contribution (SGC) method directly uses the
nformation of the molecular structure instead of the physical prop-
rties to predict the AIT. Thus, the SGC method may be a more
ttractive alternative as it is still applicable when the physical prop-
rties of the target compound are unavailable and even if the target
ompound is an unknown compound.

The SGC method has recently found wide commercial applica-
ion in the form of computer programs that estimate the properties
f pure substances from their chemical structures, for example, the
STM CHETAH [14]. While the SGC approach has been successfully
pplied to predict many of the properties of compounds, very lit-
le literature is available on predicting the AIT through the SGC
pproach. Albahri [15] proposed a SGC method in which a polyno-
ial of degree 4 is suggested as an empirical model for predicting

he AITs of 137 pure hydrocarbons with an average error percentage
f 4.2% and a maximum error percentage of 31%. To consider organic
ompounds other than pure hydrocarbons, Albahri and George [16]
eveloped a predictive model based on a 490-compound database

n which the organic compounds include hetero-atoms such as oxy-

en, and nitrogen. In their work, they first chose a polynomial of
egree 4 as the empirical model, but found that the average error
ercentage and maximum error percentage for such a model were
.2% and 125%, respectively. Because of the limited success, they
roposed a three-layer artificial neural network (ANN) structure
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593 – –
448 510.93 458

o improve the predictive performance. This ANN-SGC approach
eemed to offer a significant improvement in performance, with
verage error percentage of 2.8% and a maximum error percentage
f 20%; however, although this ANN-SGC approach exhibited bet-
er performance than that of the classical SGC approach, it usually
ncluded too many weighting parameters and was also inconve-
ient for desk calculation. Thus, there is still a demand for a more
ccurate method to predict the AIT by the classical SGC approach.

This article is organized as follows: First, the AIT database and
roup definitions for this work are discussed in Section 2. In Section
, the mathematics for developing an empirical model is discussed.
brief discussion on choosing and evaluating the empirical model

s provided in this section. The results of this work and some discus-
ion are provided in Section 4. Finally, the conclusions are presented
n Section 5.

. Database and group definitions

In this work, the prediction model was developed and validated
rom a 483-compound database in which some of the organic com-
ounds contained hydrogen, carbon, oxygen, nitrogen, or halogen
toms. In this database, there were 150 pure hydrocarbons, and
he other 333 compounds included hetero-atoms. These 483 com-
ounds were randomly distributed into a training set with 400
ompounds and a validation set with 83 compounds. As mentioned
arlier, different AIT values were reported in different literature
ources, thus the value in AIChE-DIPPR was adopted as the standard
n this work. However, in the case that the AIT of a compound was
ot available in DIPPR or the AITs reported in all the other literature
ources were consistent with each other but differed from that of
IPPR, the non-DIPPR value was adopted. The corresponding AITs

or all 483 compounds in this work are listed in Tables A1 and A2.
n these 483 data, 300 data were taken from AIChE-DIPPR and the
ther 183 data were taken from non-DIPPR sources.

To elucidate the classification of group definitions for estimating
he AITs of organic compounds, a brief review of the mechanism of
he autoignition process is provided below. Swarts and Orchin [17]
eported that the autoignition mechanism proceeds by a free radical
eaction and the stability of free-radical intermediates determines

he ease of oxidation. Thus, the AIT of a compound is highly affected
y its molecular structure because the stability of the free radicals
hat are formed is related directly to the molecular structure of the
ompound. For hydrocarbons, decreasing the chain length, addition
f methyl groups, unsaturation, branching, and cyclic and aromatic
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Table 2
Group contribution for estimation of the AIT

Group no. Group Remark MLR Degree 2 Degree 3 Degree 4

1 CH3 −22.6813 −29.9804 −22.8857 −23.1736
2 >CH2 −21.3527 −39.6875 −28.5961 −30.5288
3 >CH 4.0509 0.5544 1.3340 0.5424
4 >C< 56.6464 54.9627 49.7423 48.2437
5 CH2 −17.7405 −31.9088 −21.6668 −22.9287
6 CH– −39.7751 −66.2563 −46.3286 −49.5017
7 >C −31.1140 −36.4970 −32.7605 −33.1968
8 ≡CH −71.9616 −117.6474 −81.0169 −85.7134
9 ≡C −55.6234 −94.6821 −64.4957 −68.9986

10 >CH2 −24.6453 −40.1768 −28.4401 −30.1512
11 >CH −4.0091 −8.4713 −6.7179 −7.3545
12 >C< −15.3282 −62.9661 −21.7342 −26.1364
13 CH 20.5679 17.5968 19.5293 20.2876
14 >C −48.4525 −43.7461 −49.0687 −50.6287
15 CH 6.1265 2.5173 6.2350 6.1348
16 >C (Fused) 10.0809 7.8480 5.8332 4.9528
17 >C (Nonfused) 22.0000 24.2898 15.9976 14.9799
18 CH3 (Attached to at least

one halogen atom)
120.6545 82.3095 103.2738 114.6114

19 >CH2 −3.0301 −17.5437 −9.8344 −11.3142
20 >CH −23.3669 −37.6850 −24.2759 −26.4969
21 >C< 242.6675 247.3442 293.5064 287.6001
22 F (Nonring) −42.1638 −65.1907 −45.0477 −48.2274
23 Cl (Nonring) 37.8512 34.3163 33.9332 33.9492
24 Br (Nonring) −26.7706 −38.4893 −27.8628 −29.3678
25 F (Ring) 49.5353 49.8512 88.8289 90.5979
26 Cl (Ring) 27.1279 10.1433 79.4122 73.0277
27 Br (Ring) 54.0271 26.6567 53.4870 50.0560
28 -OH (Alcohol) −10.2828 −15.2847 −8.9378 −9.0980
29 OH (Phenol) 43.0417 19.8772 134.3524 135.0214
30 O (Nonring) −54.7172 −102.1454 −70.0383 −74.8046
31 O (Ring) −27.3097 −40.1570 −28.4801 −29.4928
32 >C O (Nonring) 10.3136 4.4457 8.1173 7.4529
33 >C O (Ring) 46.6977 37.5549 57.5044 58.9186
34 O CH (Aldehyde) −120.8556 −208.1346 −138.3186 −147.3836
35 COOH (Acid) 7.4758 −5.7007 4.0037 3.5463
36 -COO (Ester) 35.2785 34.2704 35.2011 35.1839
37 NH2 −17.8076 −33.4276 −17.7579 −18.9367
38 >NH (Nonring) −0.7601 1.5113 −1.8223 −1.5263
39 >NH (Ring) 22.7367 22.3273 24.5474 25.8972
40 >N (Nonring) −1.1683 −20.3543 −4.7926 −8.1033
41 >N (Ring) −42.3160 −47.2060 −49.3834 −51.0105
4 −35.3
4 33.2
4 82.0
4 −46.9
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3 N (Ring)
4 CN
5 NO2

tructures will elevate the AIT [18]. The relationship between the
ITs of lower alkanes and their corresponding alcohols and aldehy-
es is in the following order: alkane > alcohol > aldehyde [17]. It has
lso been reported that there is no distinction in the AITs for the cis
nd trans structure orientations in olefins and cyclic compounds.
t was found to be unnecessary to account for the location of the
lkyl substitutions on the benzene ring in the para, meta, and ortho
ositions in aromatics; the location of the alkyl branches along the
hain for iso-paraffins and iso-olefins; the location of the double
ond along the chain in olefins; and the locations of the alkyl sub-
titutions and the ring size for naphthenes [15]. Albahri and George
16] also indicated that using two sets of structural groups, one
or the aromatic ring in aromatics and the other for the cyclic ring
n naphthenes, did not result in a significant improvement in the
rediction performance.

Table 2 summarizes all the group types used for estimating the
IT in this work. The group definitions in this work basically follow

hose in Albahri and George’s work [16]; however, some of them

ave been modified as follows. After carefully examining the AITs
f organic compounds in our database, it was found that the condi-
ion of the carbon to which the halogen group is directly attached
ffects the AIT of the compound. This effect may be understood
rom the type of chemical bonding. A carbon that bears one or

c

A

780 −75.6105 −41.9897 −47.4827
611 3.5793 31.8743 24.8482
245 86.5584 80.5038 81.3197
847 −65.2997 −52.7670 −53.2661

ore halogen groups forms a polar covalent bond with the halo-
en group instead of the pure covalent bonds that exist between
he carbon atoms; this polar covalent bond will change the ability
f the carbon atom to form free radicals. In Table 2, groups 18–21
re introduced to elucidate the effect of the addition of halogen
toms to paraffins; however, the effect of adding halogen groups
o organic compounds was found to be different for compounds
ith nonring and ring structures. It was found that adding halogen

toms increased the AIT for nonring hydrocarbons, but decreased
he AIT for ring-structure compounds. Thus, the halogen atoms
ere divided into nonring attachment groups (groups 22–24) and

ing attachment groups (groups 25–27) in this study. Finally, to
nclude organic compounds such as 1-hexyne and hexyl acetylene,
roup 9 is introduced in this work to explain their structure.

. Developing the model

The simplest empirical model to predict the AIT of an organic

ompound is the multiple linear regression (MLR) model:

IT = fo +
n∑

i=1

�ifi (1)



rdous

w
n
b
l
b
f
f

A

(
(
n
E
l

l
t
t
t
b
r
(
b
a
p
c
r

A )
C.-C. Chen et al. / Journal of Haza

here n is the number of group types defined in Table 2; vi, the
umber from group i in a molecule; fi (i = 1,. . .n), the group contri-
ution for the ith defined group; and f0, the intersect of the fitting

ine. For a more accurate estimation, other nonlinear models could
e adopted as the empirical model. In the literature, the nonlinear
orm of Eq. (2) has been announced to be the most suitable form
or predicting AITs [15,16].

IT = a′ + b′

(∑
i

vifi

)
+ c′

(∑
i

vifi

)2

+ d′

(∑
i

vifi

)3

+e′

(∑
i

vifi

)4

(2)

However, such a claim is debatable. First, the parameter b′ in Eq.

2) is a redundant parameter. It is obvious that the following Eq.
3) has the same fitting and predictive abilities as Eq. (2), but the
umber of unknown parameters in Eq. (3) is one less than that in
q. (2). It is well known that solving a nonlinear regression prob-
em is usually time-consuming and can easily get bogged down at

a
d
i
a

Fig. 1. Parity plot of Eq. (2) for four different initial gue
Materials 162 (2009) 746–762 749

ocal solutions; and a redundant parameter will aggravate these
wo problems. Second, it is obvious that Eq. (3) can be reasonably
aken as a modified form from the conventional MLR model. So,
he terms corresponding to parameters b, c, and d in Eq. (3) could
e considered as the correcting terms for the MLR model, and the
esults of the MLR model could be then taken as the start point
i.e., all fi’s and a are taken from the MLR, and the others are set to
e zero) to solve the nonlinear regression problem of Eq. (3). For
given iterative algorithm, a good start point always decreases its
ossibility of being bogged at local solutions and enhance its effi-
iency, thus Eq. (3) is superior to Eq. (2) for building a model in this
espect.

IT=a +
(∑
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vifi

)
+b

(∑
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+c
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+d
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(3
To demonstrate the superiority of Eq. (3), data listed in Table A1
re used to build the models of Eqs. (2) and (3), respectively. Then,
ata listed in Table A2 are used to compare their predictive capabil-

ty. The SGC groups’ definitions listed in Table 2 and the linearized
lgorithm listed in Eq. (8) is employed to calculate the parameters

sses: (a) case 1; (b) case 2; (c) case 3; (d) case 4.
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Table 3
Comparision of robustness to initial conditions between Eqs. (2) and (3)

Initial conditions Eq. (2) Eq. (3)

R2 Q2 R2 Q2

Case 1 0.8477 0.5345 0.8477 0.5362
Case 2 0.7367 −0.3191a 0.8469 0.5336
Case 3 0.8478 0.5354 0.8472 0.5346
Case 4 0.0025 0.0018 0.8477 0.5347
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n these two equations, respectively. There are four different cases
f initial conditions considered in present study, which includes:
1) case 1 – initial guesses of parameters a and fi’s are set to be
he values obtained from the results of a MLR model, and all other
arameters are set to be zero; (2) case 2 – initial guesses of param-
ters a and fi’s are set to be the values obtained from the results
f a MLR model, and all other parameters are set to be one; (3)
ase 3 – initial guesses of parameters fi’s are set to be the values
btained from the results of a MLR model, and all other parameters
including a) are set to be zero; and (4) case 4 – initial guesses of
ll parameters are set to be zero.

Figs. 1–2 demonstrate the fitting abilities of the resulting mod-
ls of these two equations for these four different cases of initial
onditions, respectively. As shown in Fig. 1, the resulting models
f Eq. (2) are very sensitive to the initial conditions employed, and
t obviously get bogged down at the local solution in both cases
and 4. However, as shown in Fig. 2, the resulting models of Eq.
3) are almost the same in these four cases, which means that a

odel of this form is more robust to initial conditions than that
f Eq. (2). Table 3 compares the fitting abilities and the predictive
bilities of the resulting models of these two equations for these

fi
i
p
p
r

Fig. 2. Parity plot of Eq. (3) for four different initial gue
a In this case, the predictive error of the seventh compound is found to be up to
000 K.

our different initial conditions. As shown in Table 3, the result-
ng model of Eq. (2) for case 2 gives a very poor performance in
rediction, although the fitting performance for this case seems
o be of an acceptable value. In this case, it was found that the
tting error of the N,N-Dimethylbenzenamine in the testing set
s more than 1000 K (the experimental value is 644.26 K, but the
redictive value is −427.7 K), and the predictive error of this com-
ound makes the Q2 to be an unreasonable negative value. This
esult shows that when redundant parameters are introduced into

sses: (a) case 1; (b) case 2; (c) case 3; (d) case 4.
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n empirical model, there is an increased chance for the estimation
rocess to draw noises and other spurious phenomena from the
raining data into the resulting model, which always decreases the
redictive capability of the resulting model.

The sum of squared errors is the usual index to evaluate the
easibility of a given model. In this study, the quantitative measure
f goodness of fit is given by the explained variation in the training
et (R2), whereas the predictive capability, on the other hand, is
iven by the predicted variation in the validation set (Q2). These
wo indices are defined as follows.

2 = 1 −
∑K

i=1(yi − ŷ)2∑K
i=1(yi − ȳ)2

, for the training set

2 = 1 −
∑K

i=1(yi − ŷ)2∑K
i=1(yi − ȳ)2

, for the validation set

here yi is the ith sample measurement; ŷi, the predicted value of
he ith sample; ȳ, the average of all sample measurements. Usually,
he R2 and Q2 vary differently with increasing model complex-
ty (i.e., number of parameters in a model). R2 is inflationary and
pproaches unity as the model complexity increases. Hence, it is not
ufficient to only have a high R2 for a practical model. The goodness
f predictive capability Q2, on the other hand, is not inflationary and
ill not automatically approach unity with increasing model com-
lexity. Commencing with a very simple model, Q2 will increase
ith model complexity. However, at a certain degree of complexity,
2 will reach a plateau and subsequently reduce. Usually, the point
t which Q2 reaches a plateau is the trade-off point between the
tting and predictive capability. Besides aforementioned method,
common alternative to determine model complexity is to exam-

ne the hypothesis test for a given parameter in that model. In this
tudy, both Q2-statistics and hypothesis testing are used to deter-
ine whether the complexity of an empirical model is adequate or

ot.
The determination of the least-squares solution of Eq. (3) is a

onlinear regression problem. There are many different methods
or solving this problem, and the solutions from different meth-
ds may differ slightly. In this study, the linearized algorithm and
symptotic confidence intervals are adopted [19]. The following
aragraph briefly discusses this method.

Consider the following nonlinear empirical model:

i = f (xi; �) + εi, i = 1, 2 . . . . . . n
here yi is the AIT measurement of ith sample; n, the number of
ompounds in the training set; xi ∈ RK, the number of group i in
molecule; K, the number of function groups defined in Table 2;
∈ RP, the parameter vector (includes fi, a, b, c, and d) in the empir-

w
i
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l
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able 4
arameters for polynomial models of different degrees

oefficients MLR Degree 2

731.4902 771.1828
– 8.5082E−0
– –
– –

able 5
5% confidence intervals for parameters a, b, c and d in different models

odel degree a− a+ b− b+

7.17984E+02 8.24381E+02 6.76307E−04 1.02534E−0
7.07108E+02 7.93505E+02 −1.68051E−03 −4.83678E−0
7.08928E+02 7.99141E+02 −1.67053E−03 1.57982E−0
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cal model; and P, the number of parameters in the model. εi is the
easurement error and is assumed to be i.i.d. N(0,�2). Let us define

≡ [y1, y2, . . . , yn]T (4)

i(�) ≡ f (xi; �) i = 1, 2, · · ·, n (5)

(�) ≡ [f1(�), f2(�), . . . , fn(�)]T (6)

(�) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂f1(�)
∂�1

∂f1(�)
∂�2

· · · ∂f1(�)
∂�p

∂f2(�)
∂�1

∂f2(�)
∂�2

· · · ∂f2(�)
∂�p

...
...

∂fn(�)
∂�1

∂fn(�)
∂�2

· · · ∂fn(�)
∂�p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[(

∂fi(�)
∂�j

)]
(7)

Let �* be the true value of �, and �̂, which is the convergent
olution of the following iterative Eq. (8), be the estimate of �.

(a+1) = �(a) + (FT (�(a))F(�(a)))
−1

FT (�(a))[y − f (�(a))] (8)

t has been shown in the literature that an approximate, for large n,
00(1 − ˛)% confidence interval for �r is as follows [19].

ˆr ± t˛/2
n−ps
√

ĉrr (9)

here �r is the rth element of �; tn−p is the t-distribution with
n − p) degrees of freedom; s is the sample standard deviation; and
(ĉrs)] = Ĉ−1 with Ĉ = F̂T (�̂)F̂(�̂).

. Results and discussion

For a given model, the group contributions (fi) of different
olecular groups and the other parameters in the model were

olved to minimize the squared error for the 400-compound train-
ng set. Different models, including MLR and polynomial models of
egree 2–4, were considered in this study. The parameters in the
LR model were calculated by the classical least-squares method.

or nonlinear models, Eqs. (8) and (9) were used to the solve model
arameters and estimate their corresponding 95% confidence inter-
als, respectively. Table 2 summarizes all the group contributions
or the interested models in this work, and the other parameters
i.e., a, b, c, and d) for the corresponding models are listed in Table 4.
able 5 lists the 95% confidence intervals for the parameters a, b, c,
nd d in all the nonlinear models. The parameters in Tables 2 and 4

ere then used to calculate the predicted AITs of the correspond-

ng model for the 83 compounds in the validation set. The fitting
bilities and predictive abilities of these models were then calcu-
ated according to the predicted AITs. The fitting abilities of the
ifferent models for estimating AIT are summarized in Table 6, and

Degree 3 Degree 4

750.3065 754.0344
4 −8.6444E−04 −7.5627E−04

−4.5604E−06 −5.0831E−06
– −2.4496E−09

c− c+ d− d+

3 – – – –
5 −6.15028E−06 −2.97048E−06 – –
4 −7.77587E−06 −2.39041E−06 −9.58518E−09 4.68588E−09
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Table 6
Fitting ability for different types of models

Model R2 Max err (K) Avg err (K) Max err (%) Avg err (%)

MLR 0.8266 178 34 34 5.3
Degree 2 0.8361 163 33 31 5.1
Degree 3 0.8474 169 32 32 4.9
Degree 4 0.8478 168 31 32 4.9
Albahria 0.8464 166 28 31 4.2
Albahri and Georgeb 0.7900 – 58 125 9.2

a,bThese values are taken from the original papers.

Table 7
Predictive capability for different models

Model Q2 Max err (K) Avg err (K) Max err (%) Avg err (%)

MLR 0.4921 184.1 75.2 47.4 11.9
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egree 2 0.5151 189.0 72.3 45.4 11.3
egree 3 0.5361 179.6 69.8 45.9 11.0
egree 4 0.5349 178.5 69.7 45.5 11.0

he predicting abilities of the corresponding models are listed in
able 7.

It is very possible that a model fits well for training data but gives
oor predictive performance for testing data. Thus, when develop-

ng a suitable model for prediction, there is a need to balance the
tting ability and predictive capability of the model. The fitting abil-

ty measures the ability to mathematically reproduce the data of the
raining set, and the predictive capability gauges the reliability of
he predicted outcomes of other experiments. Usually, this com-
romise is achieved through the model complexity. Both R2 and
2 for different models are plotted against their model complexity

n Fig. 3. It was found that the predictive capability (Q2) reached a
aximum for a model with a polynomial of degree 3, and the fit-

ing ability (R2) for a polynomial of degree 4 was only a little better
han that for a polynomial of degree 3. Thus, the nonlinear model
uggested by Albahri, a polynomial model of degree 4, might be an
verfitting model for predicting the AITs of organic compounds.
oreover, as shown in Table 5, the 95% confidence interval for

arameter d in the polynomial model of degree 4 contains the zero

alue. This implies that we cannot reject the hypothesis d = 0 with
5% confidence, and also indicates that the model of degree 4 is an
verfitting model. For a model of degree 3, although the estimate of
is a very small number (−4.5604 × 10−6), the 95% confidence inter-
al of c does not include the zero value; and the hypothesis c = 0 will

F
m
p

o

Fig. 4. Parity plot of the MLR model: (a
Fig. 3. Adequacy of model complexity.

e rejected with 95% confidence in this case. Thus, from the method
f hypothesis testing, it was also concluded that the most adequate
odel is a polynomial of degree 3. Figs. 4–7 show the experimen-

al AITs vs. the predicted values for all the interested models in
oth the training and validation sets. It could be found in these fig-
res that the drawing at lower experimental AIT part become more
nd more flat as the model complexity increases. This means that
he compounds with large fitting errors will tend to concentrate
n the compounds with the lower experimental AIT as the model
omplexity increases. Usually, the occurring of a specific pattern
f fitting errors is an evidence to indicate that the corresponding
odel is possibly overfitting; thus, the empirical model of degree
is possibly an overfitting model. It should be noted that this phe-
omenon that the fitting errors tend to concentrate on a specific
egion was also found in Albahri and George’s original work [16].

rom all aforementioned facts, it is then concluded by us that a
odel of degree 3 is more adequate than a model of degree 4 for

redicting the AIT of an organic compound.
A comparison of the fitting ability between this study and the

ther two studies in the literature is also listed in Table 6. In

) training set; (b) validation set.
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Fig. 5. Parity plot for the polynomial model of degree 2: (a) training set; (b) validation set.

Fig. 6. Parity plot for the polynomial model of degree 3: (a) training set; (b) validation set.

Fig. 7. Parity plot for the polynomial model of degree 4: (a) training set; (b) validation set.



7 rdous

A
0
p
t
a
h
(
f
R
o
A
a
a
t
r
n

p
a
i
i
w
e
w
f
s
r
m
d
t
f
A
p
b
i
e
t
t
t
t
a
o
T

o
t
G
i
e
p
t
t
A
w
t
n
t
d
p
m
t
r
r
c
a
r

t
m
b
t
m
i
d
t
(
p
p
i
T
w
s
S

54 C.-C. Chen et al. / Journal of Haza

lbahri’s work, the R2 of their empirical model (of degree 4) is
.846 [15]. However, that empirical model was conducted from 137
ure hydrocarbons, and hence, such a model cannot be applied to
he case of organic compounds containing hetero-atoms. Albahri
nd George’s work explored 490 organic compounds containing
etero-atoms and the R2 of the corresponding empirical model
of degree 4) is 0.790 [16]. In present work, the results are drawn
rom 483 organic compounds containing hetero-atoms, and the
2 of the proposed method is 0.847—which is better than that
f Albahri and George’s work and is comparable with that of the
lbahri’s work for only pure hydrocarbons. Moreover, the aver-
ge error and maximum error of the proposed model are 4.9%
nd 32%, respectively; and these two values are 9.2% and 125% for
he model proposed by Albahri and George. Since AIT is a safety
elated parameter, the improvement in maximum error should be
otified.

As it was shown in Table 6, the R2 of the MLR model in
resent work is 0.827, which is also better than that of Albahri
nd George’s work; thus, it was deemed by us that much of the
mprovement in this work is attributed to the revised group def-
nitions instead of the type of empirical model chosen. In fact,

e also attempted to use many other types of empirical mod-
ls to improve the prediction performance, but the improvement
as limited. However, as the database in present study is different

rom that in Albahri and George’s work, aforementioned conclu-
ion that much of the improvement in this work is attributed to the
evised group definition still needs more evidences to support it. To
ake a more objective comparison, the group definitions and pre-

ictive equation of Albahri and George’s work have been applied
o our database to obtain the corresponding predictive AIT value
or all compounds. Because the predictive equation proposed by
lbahri and George is obtained from their own database, some
retreatments in our database are needed to avoid this possible
ias. First, the compounds that could not be decomposed accord-

ng to their group definitions are excluded out; and thus, there are
ach three compounds dropped from the training set and valida-
ion set, respectively. Second, as Albahri and George announced
hat the maximum error is 125% and the average error is 9.2% in
heir training set, the compounds of which the absolute predic-

ive error are larger than 150 K by their predicted equation are
lso dropped from the database to let the overall performance
f the predicted results meets aforementioned two requirements.
hus, we delete, according to this criterion, 10 compounds from

i

f
r

Fig. 8. Parity plot for Albahri and George’s model: (a) t
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ur training set and 9 compounds from our validation set, respec-
ively. With these pretreatments, the average errors of Albahri and
eorge’s model for the trimmed training set and the trimmed val-

dation set are 7.20% and 9.40%, respectively; and the maximum
rrors are 26.95% and 26.73%, respectively. Fig. 8 shows the fitting
erformance of Albahri and George’s model for both the trimmed
raining set and the trimmed validation set. It could be found
hat the drawings are of two flat parts at the lower experimental
IT zone and higher experimental AIT zone. As this phenomenon
as also found in their original work, the fitting results for these

wo trimmed sets are of similar characteristics with their origi-
al work [16]. With above efforts, it is then assumed by us that
he effects of the bias of establishing the model parameters from
ifferent database have been moderated. With aforementioned
retreatment, the fitting performance, i.e., the R2 value, of their
odels are 0.7094 and 0.6609 for the trimmed training set and

he trimmed validation set, respectively. It is obvious that the
esulting fitting performance in both trimmed sets is still infe-
ior to that of the MLR case in present study. Thus, our previous
onclusion that much of the improvement in present study is
ttributed to the revised group definitions is supported by these
esults.

To assess whether a model is capable of predicting AITs or not,
he number of compounds in the validation set is very important. In

any commercial softwares, it is a common practice that the num-
ers of observations in the validation set should be at least one-fifth
he numbers of observations in the training set to avoid underesti-

ating the predictive error [20]. However, this ratio is only 20/470
n Albahri and George’s work, which is deemed to be too small to
erive a reasonable conclusion about the predictive performance of
heir model. To show this point, we take 2-hydroxy-1-ethylaziridine

) as an example to explain the case of underestimating the
redictive error for their model. By using their group definitions and
redictive model, the estimated AIT for 2- hydroxy-1-ethylaziridine

s about 1630 K, but the reported experimental value is only 607 K.
hus, the prediction error is more than 1000 K in this example,
hich means that if this compound is included in their validation

et, the predictive capability of their model will drastically decrease.
o, it is obvious that the predictive error is possibly underestimated

n their work.

As shown in Table 7, the Q2, average error and maximum error
or the present work are 0.5361, 11.0% and 45.9%, respectively. A
ule of thumb for developing a practical model is: the difference

rimmed training set; (b) trimmed validation set.
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etween R2 and Q2 must not be too large and preferably not exceed-
ng 0.2–0.3. Moreover, a Q2 > 0.5 is regarded as good and a Q2 > 0.9
s excellent [21]. In this study, the Q2 value for the 83-compound
alidation set was 0.5361 and the R2 value for the 400-compound
raining set was 0.8474; thus, the proposed method coincides with
his rule of thumb and can be taken as a reasonable model for esti-

ating the AIT of an unavailable or unknown compound in practical
pplications.

. Conclusions

A predictive model for AITs was proposed based on the SGC
pproach. The proposed equation to predict AITs may be expressed
s Eq. (10). This model includes 45 molecular function groups and
s a polynomial of degree 3. This model was deduced from a 400-
ompound training set. The fitting ability of the proposed model
s about 0.8474, with an average error of 32 K and an average
rror percentage of 4.9%. The predictive capability of the model
as demonstrated on 83 compounds which were not included in

he original training set. The predictive capability of the proposed
odel is about 0.5361, with average error 70 K and an average error

ercentage of 11.0%

IT = 750.3065 +
(∑

vifi

)
− 8.644 × 10−4 ×

(∑
vifi

)2
i i

− 4.5604 × 10−6 ×
(∑

i

vifi

)3

(10)
A

able A1
xperimental values and predicted values of the compounds in the training set

Compound name Exp. value

1 Butane 645
2 Pentane 538
3 Hexane 513
4 Heptane 486
5 2-Methylpropane 733.15
6 2-Methylbutane 693.15
7 3-Methylpentane 551.15
8 2,2-Dimethylpropane 723.15
9 2,2-Dimethylbutane 678

10 2,3-Dimethylpentane 610.37
11 2,2,3-Trimethylbutane 685
2 1-Pentene 571

13 1-Heptene 536
14 1-Octene 523
15 1-Decene 508.15
16 1,3-Pentadiene 613
17 2-Methyl-1-pentene 579
18 2,4,4-Trimethyl-1-pentene 693
19 Cyclopentane 593
0 Methylcyclopentane 602.04
1 Ethylcyclohexane 535.37
2 n-Propylcyclohexane 521.15
3 trans-1,2-Dimethylcyclohexane 577.15
4 Dicyclohexyl 518.15
5 Decalin 541
6 Hydrindane 569
7 Cyclopentene 668.15
8 Cyclohexene 583.15
9 Benzene 771
0 Toluene 755
1 Ethylbenzene 705.37
2 n-Propylbenzene 729.15
3 n-Butylbenzene 685.37
4 1,3-Dimethylbenzene 800.93
5 1,4-Diethylbenzene 703.15
6 Biphenyl 813.15
7 Naphthalene 813
Materials 162 (2009) 746–762 755

As compared to Albahri and George’s work, the proposed model
xhibits better performance in terms of R2. It was also found that
uch of the improvement may be attributed to the modification

f the group definitions and not the type of empirical model cho-
en. As mentioned earlier, the addition of halogen atoms to nonring
ydrocarbons and ring-structure compounds has different effects
n their AITs. Thus, in this study, 14 new groups were introduced
o discriminate this effect for halogen compounds.

In this work, the average fitting error for the 400-compound
raining set was 32 K, and the average prediction error was 70 K for
he 83-compound validation set. Because the average experimental
rror in measuring the AIT is deemed to be greater than 30 K in the
iterature, the proposed method could offer a reasonable estimate
f the AIT value for the organic compounds in the training set and
ould also approximate the AITs of compounds that were unknown
r whose AITs were not readily available to within a reasonable
egree.
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ppendix A

See Tables A1 and A2 .

Reference MLR Degree 3

[11] 643.42 643.16
[11] 622.07 614.17
[11] 600.72 586.71
[11] 579.36 561.42
[3] 667.50 680.46
[3] 646.14 650.46
[3] 624.79 621.19
[3] 697.41 707.33
[4] 676.06 677.22
[3] 627.51 628.30
[11] 678.78 684.64
[11] 608.59 598.09
[11] 565.88 548.06
[4] 544.53 527.50
[3] 501.82 498.46
[11] 571.74 565.84
[11] 594.57 589.28
[3] 627.20 620.88
[11] 608.26 603.74
[3] 606.22 602.61
[3] 560.22 551.89
[3] 538.87 530.74
[3] 579.53 575.08
[3] 477.02 496.27
[11] 526.31 522.96
[11] 641.38 629.21
[3] 698.69 702.65
[3] 674.04 672.68
[4] 768.25 786.27
[11] 761.44 774.02
[3] 740.09 745.98
[3] 718.74 716.63
[3] 697.38 686.60
[3] 754.63 761.36
[3] 711.93 702.89
[3] 836.76 833.13
[11] 800.66 807.52
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Table A1 (Continued )

Compound name Exp. value Reference MLR Degree 3

38 1-Methylnaphthalene 802.04 [3] 793.86 796.18
39 Anthracene 828 [11] 833.08 826.77
40 Ethanol 673 [11] 677.17 687.74
41 1-Propanol 644.26 [3] 655.82 657.66
42 1-Butanol 616 [3] 634.47 628.16
43 2-Butanol 663 [4] 658.54 665.04
44 tert-Butanol 733 [11] 709.81 721.88
45 Cyclohexanol 573.15 [3] 593.97 588.85
46 Benzyl alcohol 709.26 [3] 752.49 759.86
47 1-Hexanol 558 [3] 591.76 573.45
48 Allyl alcohol 643 [11] 642.34 640.51
49 Dimethyl ether 623.15 [3] 631.41 629.99
50 Dibutyl ether 467.59 [3] 503.29 499.77
51 Methyl vinyl ether 560.15 [3] 596.58 586.01
52 Diphenyl ether 891.15 [3] 782.04 774.04
53 Propylene oxide 738.15 [3] 652.84 660.27
54 Propionaldehyde 500 [11] 566.60 560.55
55 Butyraldehyde 503.15 [3] 545.25 538.18
56 Acetophenone 833 [11] 771.76 781.65
57 2-Butanone 677 [11] 675.09 681.59
58 2-Pentanone 725.15 [3] 653.74 651.57
59 Cyclohexanone 693.15 [3] 654.96 662.18
60 Acetic acid 737 [11] 716.28 731.15
61 Butyric acid 718 [11] 673.58 671.24
62 Pentanoic acid 673.15 [3] 652.23 641.39
63 Acrylic acid 711.15 [3] 681.45 683.97
64 Dipropylamine 572.15 [3] 599.96 585.03
65 Diphenylamine 907.04 [3] 836.00 831.82
66 2-Aminoethanol 673 [11] 660.69 663.03
67 1-Chlorobutane 523 [11] 700.92 692.42
68 Acetyl chloride 663.15 [3] 756.97 769.12
69 Chlorobenzene 863 [4] 811.25 853.79
70 1-Bromobutane 538 [4] 636.30 627.99
71 Bromobenzene 838.15 [3] 838.15 837.56
72 Ethyl formate 708 [11] 722.73 733.82
73 Ethyl acetate 700 [3] 700.05 710.09
74 Propyl acetate 708 [11] 678.70 679.99
75 Butyl acetate 653 [11] 657.35 650.00
76 Isobutyl acetate 696 [3] 681.42 687.42
77 Methyl propionate 728 [11] 700.05 710.09
78 Ethyl propionate 718 [11] 678.70 679.99
79 Methyl butyrate 728 [11] 678.70 679.99
80 Methyl benzoate 783 [4] 796.72 805.78
81 Ethyl benzoate 763.15 [3] 775.37 780.24
82 Butyl benzoate 708 [11] 732.66 723.49
83 Ethyl acrylate 655.93 [3] 665.22 662.62
84 2-Methylpentane 579.26 [3] 624.79 621.19
85 2,2,4-Trimethylbutane 680 [11] 654.71 647.27
86 trans-2-Hexene 528 [11] 563.87 555.74
87 trans-2-Pentene 558 [3] 585.22 580.42
88 1,3-Hexadiene 593 [11] 550.39 542.81
89 1,5-Hexadiene 618 [11] 573.75 557.74
90 2-Methylpropene 738.15 [3] 637.27 646.02
91 3-Methyl-1-butene 638.15 [3] 632.66 633.43
92 4-Methyl-1-pentene 577 [11] 611.31 604.88
93 2-Ethyl-1-butene 597 [11] 594.57 589.28
94 2,3-Dimethyl-1-butene 633.15 [3] 618.64 623.97
95 2,3,3-Trimethyl-1-butene 656 [11] 648.56 650.14
96 2,4,4-Trimethyl-2-pentene 581 [3] 603.84 602.22
97 Ethylcyclopentane 533.5 [3] 584.87 575.97
98 Propylcyclopentane 542.15 [3] 563.51 551.77
99 n-Hexylcyclopentane 501 [11] 499.46 500.15

100 Isopropylcyclohexane 556 [4] 562.94 557.60
101 Butylcyclohexane 519.15 [3] 517.52 513.30
102 Isobutylcyclohexane 547 [11] 541.59 535.63
103 sec-Butylcyclohexane 550 [11] 541.59 535.63
104 tert-Butylcyclohexane 615 [11] 592.86 579.68
105 trans-1,3-Dimethylcyclohexane 579 [3] 579.53 575.08
106 trans-1,4-Dimethylcyclohexane 577 [3] 579.53 575.08
107 1,3,5-Trimethylcyclohexane 587 [11] 577.48 574.04
108 4-Isopropyl-1-methylcyclohexane 579 [11] 560.90 556.64
109 Cyclodecane 508 [11] 485.04 500.89
110 Isobutylbenzene 700.93 [3] 721.46 723.95
111 sec-Butylbenzene 690.93 [3] 721.46 723.95
112 tert-Butylbenzene 723.15 [3] 772.73 777.77
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Table A1 (Continued )

Compound name Exp. value Reference MLR Degree 3

113 1,2-Dimethylbenzene 737.04 [3] 754.63 761.36
114 1,4-Dimethylbenzene 802.04 [3] 754.63 761.36
115 1,2,3-Trimethylbenezene 743.15 [3] 747.83 748.34
116 1,2,4-Trimethylbenezene 788.15 [3] 747.83 748.34
117 1-Methyl-2-ethylbenzene 721 [11] 733.28 732.64
118 1-Methyl-3-ethylbenzene 753.15 [3] 733.28 732.64
119 1-Methyl-4-ethylbenzene 748.15 [3] 733.28 732.64
120 1,2-Diethylbenzene 677 [11] 711.93 702.89
121 1,3-Diethylbenzene 723.15 [3] 711.93 702.89
122 1-Methyl-3,5-diethylbenzene 734 [11] 705.12 689.07
123 2-Ethylbiphenyl 722 [11] 808.60 799.87
124 2-Propylbiphenyl 725 [11] 787.24 773.77
125 2-Butylbiphenyl 706 [11] 765.89 745.72
126 Diphenylmethane 759 [11] 815.40 811.02
127 1-Ethylnaphthalene 754 [11] 772.50 769.76
128 Tetralin 657.04 [3] 618.28 611.97
129 Methanol 728 [4] 698.53 717.75
130 3-Pentanol 638 [11] 637.19 635.34
131 2-Methyl-1-butanol 658.15 [3] 637.19 635.34
132 2-Propanol 672.04 [3] 679.90 695.16
133 2-Methyl-1-propanol 678 [11] 658.54 665.04
134 3-Methyl-1-butanol 623.15 [3] 637.19 635.34
135 2-Pentanol 616.48 [3] 637.19 635.34
136 2-Methyl-2-butanol 708 [11] 688.46 691.92
137 2,2-Dimethyl-1-propanol 693 [11] 688.46 691.92
138 4-Methyl-2-pentanol 613 [11] 639.91 642.58
139 1-Heptanol 555 [3] 570.41 549.52
140 4-Heptanol 568 [11] 594.48 579.75
141 2-Octanol 538 [11] 573.13 555.15
142 2-Ethyl-1-hexanol 560.93 [3] 573.13 555.15
143 1-Nonanol 533 [11] 527.70 511.71
144 1-Decanol 523 [11] 506.35 499.12
145 Ethylene glycol 673.15 [3] 668.22 672.30
146 1,2-Propanediol 694.26 [3] 670.94 679.72
147 Glycerol 673 [11] 661.99 664.30
148 2-Ethyl-1,3-hexanediol 633 [11] 588.25 572.95
149 2,2-Dimethyl-1,3-propanediol 672 [3] 679.50 676.48
150 3,5-Dimethylphenol 828 [11] 813.55 867.67
151 2,4-Dimethylphenol 872 [3] 813.55 867.67
152 2,4-Dimethyl-3-pentanol 668 [11] 642.64 649.88
153 Methoxybenzene 748 [4] 706.72 703.18
154 Dipentyl ether 444 [4] 460.59 489.67
155 Butyl vinyl ether 528 [11] 532.52 519.46
156 Ethylene oxide 702.04 [3] 654.89 661.48
157 1,2-Epoxyethylbenzene 811 [11] 728.16 733.63
158 Isobutyraldehyde 534 [11] 569.32 566.52
159 2-Propenal 573 [11] 553.12 547.25
160 Crotonaldehyde 553 [11] 508.40 515.34
161 2-Ethylcrotonaldehyde 523 [11] 473.03 498.22
162 3-Pentanone 725.37 [3] 653.74 651.57
163 Propionic acid 713 [11] 694.93 701.37
164 Isobutyric acid 733 [11] 697.65 708.76
165 Isopentanoic acid 689.15 [3] 676.30 678.66
166 Hexanoic acid 653.15 [3] 630.87 612.48
167 2-Methylpentanoic acid 651 [11] 654.95 648.68
168 Heptanoic acid 571 [3] 609.52 585.14
169 Decanoic acid 570 [3] 545.46 518.90
170 Dodecanoic acid 503 [11] 502.76 494.32
171 Tetradecanoic acid 508 [11] 460.05 491.37
172 Hexadecanoic acid 513 [11] 417.35 515.16
173 o-Phthalic acid 863 [11] 814.95 810.35
174 2,2-Dimethylpropionic acid 723 [11] 727.57 735.22
175 2-Ethylbutyric acid 663 [11] 654.95 648.68
176 2-Aminobiphenyl 725 [11] 834.82 827.27
177 1,2-Propanediamine 689 [11] 655.89 661.17
178 DL-1-Amino-2-propanol 647.04 [3] 663.42 670.43
179 Diisopropanolamine 647 [11] 630.20 625.75
180 Triisopropanolamine 593 [11] 579.52 567.12
181 2-Diethylaminoethanol 593 [11] 589.27 574.26
182 Benzyl chloride 858.15 [3] 818.94 815.54
183 1,1,1-Trichloroethane 810.15 [3] 799.00 801.62
184 Trichloroethylene 693 [11] 774.15 772.52
185 Bis(2-ethoxyethyl)ether 478 [11] 393.86 521.09
186 n-Hexyl Cellosolve 553 [11] 494.34 495.07
187 Methyl formate 729.26 [3] 744.09 762.48
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188 Propyl formate 708 [11] 701.38 704.10
189 n-Butyl formate 595.37 [3] 680.03 673.98
190 lsopropyl formate 713 [11] 725.46 741.00
191 Methyl acetate 748 [11] 721.41 739.65
192 lsopropyl acetate 698 [11] 702.78 717.44
193 Pentyl acetate 633.15 [3] 636.00 620.75
194 lsopentyl acetate 653 [11] 660.07 657.35
195 Hexyl acetate 528 [11] 614.64 592.88
196 tert-Butyl acetate 708 [11] 732.69 743.67
197 sec-Butyl acetate 683 [11] 681.42 687.42
198 n-Decyl acetate 488 [11] 529.23 508.03
199 Vinyl acetate 698 [11] 686.57 692.73
200 Allyl acetate 647.04 [3] 665.22 662.62
201 Phenyl acetate 858 [11] 796.72 805.78
202 n-Propyl propionate 703 [11] 657.35 650.00
203 Isopropyl propionate 698 [11] 681.42 687.42
204 Butyl propionate 658 [11] 636.00 620.75
205 Isobutyl propionate 708 [11] 660.07 657.35
206 Ethyl butyrate 713 [11] 657.35 650.00
207 Propyl butyrate 693 [11] 636.00 620.75
208 1-Hexyne 536 [4] 517.17 515.16
209 3-Hexyn-2,5-diol 553 [4] 562.42 560.40
210 Ethyne 578.15 [3] 587.57 584.98
211 1,2,4-Triethenyl-Cyclohexane 543 [4] 472.98 493.21
212 4-Fluorobenzyl chloride 863 [4] 863.00 861.47
213 1,1-Difluoro-1-chloroethane 905 [3] 905.00 880.03
214 Fluoroethene 658.15 [3] 631.81 632.80
215 Amyl nitrite 478 [4] 576.41 560.35
216 Tetrahydropyrrole 618 [4] 655.65 657.45
217 1-Octanamine 538 [4] 541.53 523.05
218 N-Ethyl-N,N-diisopropylamine 513 [4] 603.66 600.89
219 2-Amino-2-ethylhexane 538 [4] 565.61 548.13
220 N-Butyl-1-butanamine 533 [4] 557.25 537.62
221 N,N-Dimethylacetamide 627.15 [3] 672.59 682.56
222 2-Butoxime 588 [4] 588.00 588.66
223 2-Hydroxy-1-ethylaziridine 607 [4] 586.90 575.59
224 1-Benzazine 753.15 [3] 811.82 814.86
225 Nitrocarbol 652.15 [3] 661.82 671.68
226 Aminomethane 703.15 [3] 691.00 708.54
227 Ethylamine 657 [3] 669.65 678.44
228 N,N-Dimethylamine 673.15 [3] 685.37 701.25
229 Piperazidine 728.15 [3] 678.38 683.26
230 Azabenzene 823 [4] 867.59 855.42
231 Tetrafluorethene 473.15 [3] 500.61 520.06
232 Imidole 823 [4] 836.50 838.93
233 Triacetaldehyde 510.93 [3] 569.49 573.94
234 3-Picoline 810 [3] 775.89 786.84
235 Butane nitrile 761 [4] 748.13 750.73
236 Cyanoacetic ester 733 [4] 783.41 784.63
237 2-Picoline 810.93 [3] 775.89 786.84
238 1,1-Dimethylcyclohexane 577 [3] 547.57 544.64
239 2,3,3-Trimethyl-1-Pentene 504 [4] 627.20 620.88
240 Isoprene 493.15 [3] 602.44 600.74
241 �-Methylstyrene 847.59 [3] 712.59 719.51
242 Butyl butyrate 623 [11] 614.64 592.88
243 Propylamine 591 [3] 648.30 648.47
244 �-Pinene 528.15 [3] 562.92 560.17
245 trans-2-Butene 597.04 [3] 606.58 607.41
246 1-Dodecanol 548.15 [3] 463.65 489.73
247 1,3-Butanediol 667.04 [3] 649.59 649.73
248 Isobutyl acrylate 613.15 [3] 642.54 638.83
249 Dimethyl terephthalate 843.15 [3] 825.19 823.65
250 1,7-Octadiene 493 [4] 531.05 517.32
251 1,3-Diisopropylbenzene 722 [4] 717.37 717.63
252 Benzoyl chloride 873 [4] 832.29 829.41
253 1,4-Dioxane 453.15 [3] 578.29 577.08
254 2-Ethylhexanal 463.15 [3] 483.91 496.49
255 Methylhexanone 728 [4] 635.11 629.39
256 2-(2-Methoxyethoxy)ethanol 488 [4] 503.68 500.18
257 2-Methoxyethyl ether 463 [4] 436.57 493.03
258 1,2-Dimethoxyethane, 473 [4] 533.99 521.67
259 Ethyl vinyl ether 451 [4] 575.22 560.78
260 2-(2-Ethoxyethoxy) ethanol 477.15 [3] 482.33 492.09
261 Pentanal 495.15 [3] 523.90 519.29
262 2,2′-Dihydroxyethyl ether 502.04 [3] 570.80 550.39
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263 1,1-Diethoxyethane 503.15 [3] 515.36 509.67
264 2-Methyl-2-propenal 507.15 [3] 539.10 540.20
265 2-Ethoxyethanol 508.15 [3] 579.75 562.35
266 1-Nonene 510 [3] 523.18 510.75
267 Methylal 510.35 [3] 555.34 541.08
268 2-Butoxyethanol 511.15 [3] 537.05 520.58
269 Butylcyclopentane 523.15 [3] 542.16 530.64
270 trans-Decahydronaphthalene 528 [4] 526.31 522.96
271 beta-Pinene 528 [3] 522.65 525.46
272 1-Hendecanol 550 [3] 485.00 491.58
273 1-Nonanol 550 [3] 527.70 511.71
274 Methyl acetylacetate 623 [4] 710.37 718.56
275 Propanoic acid anhydride 558 [3] 609.33 589.86
276 2-Methoxyethanol 558.15 [3] 601.10 587.73
277 2-Pentene 561 [3] 585.22 580.42
278 cis-2-Methylcyclohexanol 569.15 [3] 591.93 587.77
279 cis-4-Methylcyclohexanol 570.15 [3] 591.93 587.77
280 cis-1,4-Dimethylcyclohexane 577 [3] 579.53 575.08
281 cis-1,2-Dimethylcyclohexane 577.15 [3] 579.53 575.08
282 2-Methylnitrobenzene 693 [4] 730.33 731.32
283 2,4-Dihydroxy-2-methylpentane 698 [4] 682.23 683.91
284 cis-1,3-Dimethylcyclohexane 579 [3] 579.53 575.08
285 1-Butanamine 585 [3] 626.94 619.27
286 2-Furancarboxaldehyde 588.71 [3] 596.58 589.39
287 Hexahydro-1H-azepine 603.15 [3] 606.36 599.98
288 Acetylene tetrabromide 608.15 [3] 632.51 637.16
289 2,4-Pentanedione 613.15 [3] 638.67 639.32
290 Propyl ac rylate 615 [3] 643.87 632.98
291 1-Methyl-2-pyrrolidinone 619.15 [3] 639.25 646.13
292 1-Methoxy-2-propyl acetate 627.15 [3] 626.71 614.97
293 1,4-Butanediol 630 [3] 625.51 613.48
294 2-(2-Ethoxyethoxy)ethyl acetate 583 [4] 505.21 497.60
295 Nitroethane 633.15 [3] 640.47 641.83
296 2-Methyt-1-butene 638 [3] 615.92 616.92
297 2-Aminoethylethanolamine 641 [3] 617.23 603.06
298 Allylamine 647.04 [3] 634.81 631.47
299 1,3-Propylene glycol 651 [3] 646.87 642.43
300 2-Ethoxyethyl acetate 652.59 [3] 602.63 580.99
301 Ethylenediamine 658.15 [3] 653.17 653.80
302 1-Methyl-3-nitrobenzene 713 [4] 730.33 731.32
303 Acetic acid anhydride 603 [4] 652.04 646.66
304 2-Furanmethanol 664.15 [3] 685.80 691.87
305 2-Heptanone 666.15 [3] 611.03 594.31
306 Crotonic acid 669.26 [3] 636.73 634.34
307 Ethyl 2-hydroxypropanoate 673.15 [3] 693.82 702.11
308 1,3,5-Trioxacyclohexane 683 [4] 575.63 577.05
309 Hexanedioic acid 678 [4] 661.03 639.64
310 Ethylene chlorohydrin 698.15 [3] 734.68 736.73
311 Cyclobutane 700 [3] 632.91 632.07
312 Tartaric acid 700.93 [3] 733.98 743.06
313 3-Isopropyltoluene 709 [3] 736.00 739.83
314 3-Methyl-2-butanol 710 [3] 661.27 672.44
315 1,2-Epoxybutane 643 [4] 631.49 630.69
316 N,N-Dimethylformamide 683 [4] 564.10 561.31
317 N-Phenylacetoacetamide 725.15 [3] 759.96 760.32
318 Methyl formate 729.26 [3] 744.09 762.48
319 1,1-Dichloroethane 731.15 [3] 761.14 770.60
320 trans-1,2-dichloroethylene 733 [3] 727.64 725.05
321 1,1,2-Trichloroethane 733.15 [3] 818.65 812.62
322 Acetonitrile 797 [4] 790.83 804.18
323 Vinyl chloride 745 [3] 711.83 715.42
324 Ethylphenylamine 752.15 [3] 739.33 744.14
325 Acrylonitrile 754.26 [3] 756.00 762.67
326 3-Aminotoluene 755.15 [3] 759.51 766.35
327 4-Aminotoluene 755.15 [3] 759.51 766.35
328 Nitrobenzol 753 [4] 737.14 744.69
329 1-Bromopropane 763.15 [3] 657.66 657.49
330 3-Hydroxypropionitrile 767.59 [3] 760.53 764.49
331 1,4-Benzenedicarboxylic acid 769 [3] 814.95 810.35
332 Ethyl bromide 784.26 [3] 679.01 687.56
333 o-Nitroaniline 794.15 [3] 735.20 736.57
334 N-Phenylacetamide 803.15 [3] 771.00 779.95
335 4-Picoline 810 [3] 775.89 786.84
336 Hexanedinitrile 823.15 [3] 810.13 794.59
337 Dichlorofluoromethane 825.15 [3] 741.66 748.85
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338 1,2-Dichloropropane 830 [3] 758.11 761.07
339 Benzoic acid 805 [4] 791.60 798.61
340 1,3,5-Trichlorobenzene, 850 [3] 897.25 845.55
341 p-Nitroaniline 773 [4] 735.20 736.57
342 Phthalic anhydride 857.04 [3] 866.08 862.51
343 Hexachlorobutadiene 883.15 [3] 834.14 816.57
344 Methyl chloride 905 [3] 890.00 859.46
345 1,4-Dichlorobenzene 920 [3] 854.25 880.02
346 1,2-Dichlorobenzene 913 [4] 854.25 880.02
347 2-Methylnaphthalene 802 [3] 793.86 796.18
348 cis-1,2-Dichloroethylene 733 [3] 727.64 725.05
349 Ethylene 723.15 [3] 696.01 705.72
350 Ethyl chloride 792 [3] 743.63 751.52
351 Ethane 745 [3] 686.13 703.16
352 Acetone 738 [4] 696.44 711.67
353 Propane 723 [3] 664.77 673.03
354 Chloroprene 593.15 [3] 662.97 658.21
355 cis-2-Butene 598.15 [3] 606.58 607.41
356 Diethylamine 585.15 [3] 642.66 641.28
357 Cyclopentadiene 913.15 [3] 789.12 797.29
358 2-Methyl-2-butene 563 [3] 592.56 598.40
359 p-Hydroquinone 788.7 [3] 886.08 826.80
360 2-Methyl-1,3-butadiene 493 [3] 557.72 558.01
361 2-Hexanone 697.04 [3] 632.38 622.27
362 m-Cresol 832.04 [3] 820.36 872.41
363 o-Cresol 872.04 [3] 820.36 872.41
364 2,4-Dimethylpentane 610 [3] 627.51 628.30
365 Isopropyl butyrate 708 [3] 660.07 657.35
366 3-Methylhexane 553.15 [3] 603.44 593.30
367 2,6-Xylenol 872.04 [3] 813.55 867.67
368 Vinylcyclohexene 543 [3] 547.51 543.44
369 3,4,4-Trimethyl-2-pentene 598 [3] 603.84 602.22
370 Isobutyl isobutyrate 705.15 [3] 662.79 664.73
371 Benzyl acetate 734 [3] 775.37 780.24
372 Glyceryl triacetate 706 [3] 730.63 731.12
373 Dicyclopentadiene 783.15 [3] 748.43 744.65
374 Diethyl phthalate 730.15 [3] 782.49 774.10
375 Phenyl benzoate 833 [3] 872.03 855.43
376 2-(2-Butoxyethoxy)ethanol 477.59 [3] 439.62 493.46
377 Diglycolic acid 503 [3] 649.02 626.52
378 1-Hendecene 510 [3] 480.47 491.28
379 cis-Decahydronaphthalene 523.15 [3] 526.31 522.96
380 Tetrahydro-2-furancarbinol 555.37 [3] 594.60 588.67
381 trans-2-Methylcyclohexanol 569.15 [3] 591.93 587.77
382 Morpholine 583.15 [3] 628.34 628.07
383 3,3-Dimethylpentane 610 [3] 654.71 647.27
384 4-Methyl-3-penten-2-one 617.59 [3] 602.87 606.24
385 Vinyl ether 633.15 [3] 561.74 547.47
386 Ethanamine 657 [3] 669.65 678.44
387 4-Hydroxynitrobenzene 729 [4] 730.33 731.32
388 Isocrotonic acid 669 [3] 636.73 634.34
389 Isopropylamine 675.15 [3] 672.37 685.86
390 2-Methoxy-2-methylpropane 708 [4] 642.69 634.03
391 2-Propenoic acid 688 [4] 686.57 692.73
392 2-Aminotoluene 755.15 [3] 759.51 766.35
393 Ethylene diacetate 755.15 [3] 713.98 716.99
394 Allyl chloride 663 [4] 708.80 705.13
395 1,3-Benzenedicarboxylic acid 769 [3] 814.95 810.35
396 Methyl bromide 810.37 [3] 825.37 818.85
397 1,2-Dimethyl phthalate 829 [3] 825.19 823.65
398 1,2,4-Trichlorobenzol 844.26 [3] 897.25 845.55
399 m-Nitroaniline 794 [4] 735.20 736.57
400 Dichloromethane 878 [4] 804.16 804.54

Table A2
Experimental values and predicted values of the compounds in the validation set

No. Compound name Exp. value Reference MLR Degree 3

1 1-Hexene 538 [4] 587.24 571.80
2 1-Hexadecene 513.15 [3] 373.71 554.21
3 2,3-Dimethyl-2-butene 673.7 [3] 578.54 589.59
4 Cyclohexane 533.15 [3] 583.62 577.15
5 Methylcyclohexane 558.15 [3] 581.57 576.11
6 Isopropylbenzene 697.04 [3] 742.81 753.03
7 1,3,5-Trimethylbenzene 823.15 [3] 747.83 748.34
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8 1-Pentanol 573.15 [3] 613.12 599.87
9 1-Octanol 555 [3] 549.06 528.73

10 Phenol 878 [11] 827.16 876.07
11 Diisopropylamine 588.71 [3] 648.11 655.90
12 1,2-Dichloroethane 711 [11] 779.78 769.54
13 Isobutyl formate 593.15 [3] 704.10 711.48
14 2,3-Dimethylbutane 669 [11] 648.87 657.81
15 1,3-Cyclohexadiene 633 [11] 764.47 771.11
16 2-Methylbiphenyl 775 [11] 829.95 823.38
17 Dipropyl ether 488 [4] 546.00 529.93
18 Dihexyl ether 458.15 [3] 417.88 504.76
19 Octanoic acid 570 [3] 588.17 560.00
20 Hexylacetylene 498 [4] 474.46 492.79
21 Isopentyl nitrite 481 [4] 600.49 592.09
22 Cyclopropane 770.93 [3] 657.55 661.53
23 1-Propyne-3-ol 388.15 [3] 572.27 566.27
24 Dibutyl sebacate 638.15 [3] 457.75 494.43
25 Ethoxy ethane 433.15 [3] 588.71 575.05
26 1-Dodecene 528.15 [3] 555.54 516.29
27 1-Chloropentane 533.15 [3] 679.57 662.31
28 Ethyl acetylacetate 568.15 [3] 689.01 688.55
29 trans-4-Methylcyclohexanol 570.15 [3] 591.93 587.77
30 Ethyleneimine 593.15 [3] 704.94 717.22
31 Triethylene glycol 644 [3] 473.37 490.09
32 2-Isopropyltoluene 650 [3] 736.00 739.83
33 2-Methyl-1-propanamine 651.15 [3] 651.02 655.80
34 1-Nitropropane 694.15 [3] 619.12 612.90
35 3,5,5-Trimethyl-2-cyclohexane-1-one 733.15 [3] 617.64 626.44
36 Acetaldehyde 758.15 [3] 587.95 585.74
37 Phenylacetylene 763 [3] 656.54 647.94
38 1-Chloropropane 793.15 [3] 722.28 722.37
39 Vinylidene chloride 843 [3] 758.34 763.58
40 cis-1-Propenylbenzene 848 [3] 681.89 679.35
41 2,3-Dimethylphenol 872 [3] 813.55 867.67
42 3,4-Dimethylphenol 872.04 [3] 813.55 867.67
43 Formic acid 874.26 [3] 738.97 754.30
44 Aniline 813 [2] 766.32 778.86
45 Propylene 728.15 [3] 651.29 655.71
46 Maleic anhydride 749.82 [3] 838.71 853.23
47 1,3-Butadiene 702.04 [3] 616.46 609.80
48 1-Butene 657.04 [3] 629.94 626.27
49 1,5-Pentanediol 608.15 [3] 604.16 586.06
50 cis-2-Hexene 526 [3] 563.87 555.74
51 Ethylcyclobutane 483 [3] 609.51 602.46
52 p-Cresol 832.04 [3] 820.36 872.41
53 2-Methylhexane 566 [4] 603.44 593.30
54 n-Butyl acrylate 565.93 [3] 622.51 604.45
55 Styrene 763.15 [3] 726.61 729.15
56 Isopentyl propionate 698 [3] 638.72 627.85
57 p-Cymene 709.26 [3] 736.00 739.83
58 2-Ethylhexyl acrylate 530.93 [3] 561.18 536.87
59 1,1-Diphenylethane 713.15 [3] 818.13 816.76
60 Dibutyl phthalate 675.15 [3] 697.07 656.62
61 Ethyl methyl ether 463.15 [3] 610.06 601.61
62 Peroxyacetic acid 473.15 [3] 654.12 652.72
63 Cyclohexenylethylene 543 [3] 637.17 624.75
64 Butanoic acid anhydride 552.59 [3] 566.63 541.44
65 Cyclohexanamine 566.15 [3] 586.45 580.73
66 Tetraethylenepentamine 594 [4] 522.77 507.17
67 Nonanoic acid 589 [3] 566.82 537.71
68 Tetrahydrofuran 594.26 [3] 605.60 603.70
69 Diethylenetriamine 631 [3] 609.70 594.61
70 N,N-Dimethylbenzenamine 644.26 [3] 737.59 746.91
71 2-Butanamine 651 [3] 651.02 655.80
72 1,2,3,4-Tetramethylbenzene 700 [3] 741.02 735.04
73 2-Nitropropane 698 [4] 643.19 649.12
74 Diisopropyl ether 678 [4] 594.15 587.86
75 2-Hydroxybenzoic acid methyl ester 728 [3] 855.64 879.58
76 4-Methyl-2-pentanone 721 [4] 656.46 658.93
77 Propionitrile 785 [3] 769.48 778.49
78 2-Hydroxybenzoic acid 818.15 [3] 850.51 878.66
79 trans-1-Methylstyrene 848 [3] 681.89 679.35
80 2-Chloropropane 863 [4] 700.61 713.28
81 2,5-Dimethylphenol 872 [3] 813.55 867.67
82 4-Hydroxy-4-methyl-2-pentanone 876.48 [3] 698.77 700.47
83 1,3-Dichlorobenzene 920 [3] 854.25 880.02
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